Abstract from article:
We introduce AI University (AI-U), a flexible framework for AI-driven course content delivery that adapts to instructors’ teaching styles. At its core, AI-U fine-tunes a large language model (LLM) with retrieval-augmented generation (RAG) to generate instructor-aligned responses from lecture videos, notes, and textbooks. Using a graduate-level finite-element-method (FEM) course as a case study, we present a scalable pipeline to systematically construct training data, fine-tune an open-source LLM with Low-Rank Adaptation (LoRA), and optimize its responses through RAG-based synthesis. Our evaluation – combining cosine similarity, LLM-based assessment, and expert review – demonstrates strong alignment with course materials. We also have developed a prototype web application, available at this https URL, that enhances traceability by linking AI-generated responses to specific sections of the relevant course material and time-stamped instances of the open-access video lectures. Our expert model is found to have greater cosine similarity with a reference on 86% of test cases. An LLM judge also found our expert model to outperform the base Llama 3.2 model approximately four times out of five. AI-U offers a scalable approach to AI-assisted education, paving the way for broader adoption in higher education. Here, our framework has been presented in the setting of a class on FEM – a subject that is central to training PhD and Master students in engineering science. However, this setting is a particular instance of a broader context: fine-tuning LLMs to research content in science.
Latest posts by Ryan Watkins (see all)
- From Lived Experience to Insight: Unpacking the Psychological Risks of Using AI Conversational Agents - May 30, 2025
- Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration - May 29, 2025
- Identifying, Evaluating, and Mitigating Risks of AI Thought Partnerships - May 26, 2025