Cognitive augmentation is a cornerstone in advancing education, particularly through personalized learning. However, personalizing extensive textual materials, such as narratives and academic textbooks, remains challenging due to their heavy use, which can hinder learner engagement and understanding. Building on cognitive theories like Dual Coding Theory — which posits that combining textual and visual information enhances comprehension and memory — this study explores the potential of Generative AI (GenAI) to enrich educational materials. We utilized large language models (LLMs) to generate concise text summaries and image generation models (IGMs) to create visually aligned content from textual inputs. After recruiting 24 participants, we verified that integrating AI-generated supplementary materials significantly improved learning outcomes, increasing post-reading test scores by 7.50%. These findings underscore GenAI’s transformative potential in creating adaptive learning environments that enhance cognitive augmentation.
Latest posts by Ryan Watkins (see all)
- From Lived Experience to Insight: Unpacking the Psychological Risks of Using AI Conversational Agents - May 30, 2025
- Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration - May 29, 2025
- Identifying, Evaluating, and Mitigating Risks of AI Thought Partnerships - May 26, 2025