Successful teaching requires an assumption of how the learner learns – how the learner uses experiences from the world to update their internal states. We investigate what expectations people have about a learner when they teach them in an online manner using rewards and punishment. We focus on a common reinforcement learning method, Q-learning, and examine what assumptions people have using a behavioral experiment. To do so, we first establish a normative standard, by formulating the problem as a machine teaching optimization problem. To solve the machine teaching optimization problem, we use a deep learning approximation method which simulates learners in the environment and learns to predict how feedback affects the learner’s internal states. What do people assume about a learner’s learning and discount rates when they teach them an idealized exploration-exploitation task? In a behavioral experiment, we find that people can teach the task to Q-learners in a relatively efficient and effective manner when the learner uses a small value for its discounting rate and a large value for its learning rate. However, they still are suboptimal. We also find that providing people with real-time updates of how possible feedback would affect the Q-learner’s internal states weakly helps them teach. Our results reveal how people teach using evaluative feedback and provide guidance for how engineers should design machine agents in a manner that is intuitive for people.
Latest posts by Ryan Watkins (see all)
- Limitations of the LLM-as-a-Judge Approach for Evaluating LLM Outputs in Expert Knowledge Tasks - June 7, 2025
- Neural and Cognitive Impacts of AI: The Influence of Task Subjectivity on Human-LLM Collaboration - June 5, 2025
- From Lived Experience to Insight: Unpacking the Psychological Risks of Using AI Conversational Agents - May 30, 2025