The widespread public deployment of large language models (LLMs) in recent months has prompted a wave of new attention and engagement from advocates, policymakers, and scholars from many fields. This attention is a timely response to the many urgent questions that this technology raises, but it can sometimes miss important considerations. This paper surveys the evidence for eight potentially surprising such points: 1. LLMs predictably get more capable with increasing investment, even without targeted innovation. 2. Many important LLM behaviors emerge unpredictably as a byproduct of increasing investment. 3. LLMs often appear to learn and use representations of the outside world. 4. There are no reliable techniques for steering the behavior of LLMs. 5. Experts are not yet able to interpret the inner workings of LLMs. 6. Human performance on a task isn’t an upper bound on LLM performance. 7. LLMs need not express the values of their creators nor the values encoded in web text. 8. Brief interactions with LLMs are often misleading.
Latest posts by Ryan Watkins (see all)
- The Essentials of AI for Life and Society: An AI Literacy Course for the University Community - January 14, 2025
- A Novel Approach to Scalable and Automatic Topic-Controlled Question Generation in Education - January 11, 2025
- Engineering of Inquiry: The “Transformation” of Social Science through Generative AI - January 10, 2025