Users are the North Star for AI Transparency

posted in: reading | 0

Abstract: Despite widespread calls for transparent artificial intelligence systems, the term is too overburdened with disparate meanings to express precise policy aims or to orient concrete lines of research. Consequently, stakeholders often talk past each other, with policymakers expressing vague demands and practitioners devising solutions that may not address the underlying concerns. Part of why this happens is that a clear ideal of AI transparency goes unsaid in this body of work. We explicitly name such a north star — transparency that is user-centered, user-appropriate, and honest. We conduct a broad literature survey, identifying many clusters of similar conceptions of transparency, tying each back to our north star with analysis of how it furthers or hinders our ideal AI transparency goals. We conclude with a discussion on common threads across all the clusters, to provide clearer common language whereby policymakers, stakeholders, and practitioners can communicate concrete demands and deliver appropriate solutions. We hope for future work on AI transparency that further advances confident, user-beneficial goals and provides clarity to regulators and developers alike.

Ryan Watkins