We show how to assess a language model’s knowledge of basic concepts of morality. We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality. Models predict widespread moral judgments about diverse text scenarios. This requires connecting physical and social world knowledge to value judgements, a capability that may enable us to steer chatbot outputs or eventually regularize open-ended reinforcement learning agents. With the ETHICS dataset, we find that current language models have a promising but incomplete ability to predict basic human ethical judgements. Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.
Latest posts by Ryan Watkins (see all)
- Experimental Evidence That Conversational Artificial Intelligence Can Steer Consumer Behavior Without Detection - September 28, 2024
- Don’t be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration - September 20, 2024
- Implementing New Technology in Educational Systems - September 19, 2024