We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery. The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data. If we address the fundamental challenges associated with “bridging the gap” between domain-driven scientific models and data-driven AI learning machines, then we expect that these AI models can transform hypothesis generation, scientific discovery, and the scientific process itself.
Latest posts by Ryan Watkins (see all)
- The Essentials of AI for Life and Society: An AI Literacy Course for the University Community - January 14, 2025
- A Novel Approach to Scalable and Automatic Topic-Controlled Question Generation in Education - January 11, 2025
- Engineering of Inquiry: The “Transformation” of Social Science through Generative AI - January 10, 2025