We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery. The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data. If we address the fundamental challenges associated with “bridging the gap” between domain-driven scientific models and data-driven AI learning machines, then we expect that these AI models can transform hypothesis generation, scientific discovery, and the scientific process itself.
Latest posts by Ryan Watkins (see all)
- Synergizing Human-AI Agency: A Guide of 23 Heuristics for Service Co-Creation with LLM-Based Agents - December 1, 2023
- AI-Augmented Surveys: Leveraging Large Language Models and Surveys for Opinion Prediction [imputation] - November 29, 2023
- Enhancing Human Persuasion With Large Language Models - November 29, 2023